Contribution of the Type II Chaperonin, TRiC/CCT, to Oncogenesis

نویسندگان

  • Soung-Hun Roh
  • Moses Kasembeli
  • Deenadayalan Bakthavatsalam
  • Wah Chiu
  • David J. Tweardy
  • Salvador Ventura
چکیده

The folding of newly synthesized proteins and the maintenance of pre-existing proteins are essential in sustaining a living cell. A network of molecular chaperones tightly guides the folding, intracellular localization, and proteolytic turnover of proteins. Many of the key regulators of cell growth and differentiation have been identified as clients of molecular chaperones, which implies that chaperones are potential mediators of oncogenesis. In this review, we briefly provide an overview of the role of chaperones, including HSP70 and HSP90, in cancer. We further summarize and highlight the emerging the role of chaperonin TRiC (T-complex protein-1 ring complex, also known as CCT) in the development and progression of cancer mediated through its critical interactions with oncogenic clients that modulate growth deregulation, apoptosis, and genome instability in cancer cells. Elucidation of how TRiC modulates the folding and function of oncogenic clients will provide strategies for developing novel cancer therapies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein folding: Versatility of the cytosolic chaperonin TRiC/CCT

Efficient de novo folding of actins and tubulins requires two molecular chaperones, the chaperonin TRiC (or CCT) and its novel cofactor GimC (or prefoldin). Recent studies indicate that TRiC is exquisitely adapted for this task, yet has the ability to interact with and assist the folding of numerous other cellular proteins.

متن کامل

Crystal Structure of the Thermosome, the Archaeal Chaperonin and Homolog of CCT

We have determined to 2.6 A resolution the crystal structure of the thermosome, the archaeal group II chaperonin from T. acidophilum. The hexadecameric homolog of the eukaryotic chaperonin CCT/TRiC shows an (alphabeta)4(alphabeta)4 subunit assembly. Domain folds are homologous to GroEL but form a novel type of inter-ring contact. The domain arrangement resembles the GroEL-GroES cis-ring. Parts ...

متن کامل

The Cytosolic Chaperonin CCT/TRiC and Cancer Cell Proliferation

The molecular chaperone CCT/TRiC plays a central role in maintaining cellular proteostasis as it mediates the folding of the major cytoskeletal proteins tubulins and actins. CCT/TRiC is also involved in the oncoprotein cyclin E, the Von Hippel-Lindau tumour suppressor protein, cyclin B and p21(ras) folding which strongly suggests that it is involved in cell proliferation and tumor genesis. To a...

متن کامل

TRiC/CCT cooperates with different upstream chaperones in the folding of distinct protein classes.

The role in protein folding of the eukaryotic chaperonin TRiC/CCT is only partially understood. Here, we show that a group of WD40 beta-propeller proteins in the yeast cytosol interact transiently with TRiC upon synthesis and require the chaperonin to reach their native state. TRiC cooperates in the folding of these proteins with the ribosome-associated heat shock protein (Hsp)70 chaperones Ssb...

متن کامل

The Structural Basis of Substrate Recognition by the Eukaryotic Chaperonin TRiC/CCT

The eukaryotic chaperonin TRiC (also called CCT) is the obligate chaperone for many essential proteins. TRiC is hetero-oligomeric, comprising two stacked rings of eight different subunits each. Subunit diversification from simpler archaeal chaperonins appears linked to proteome expansion. Here, we integrate structural, biophysical, and modeling approaches to identify the hitherto unknown substr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015